Bridging scales through multiscale modeling: a case study on protein kinase A
نویسندگان
چکیده
The goal of multiscale modeling in biology is to use structurally based physico-chemical models to integrate across temporal and spatial scales of biology and thereby improve mechanistic understanding of, for example, how a single mutation can alter organism-scale phenotypes. This approach may also inform therapeutic strategies or identify candidate drug targets that might otherwise have been overlooked. However, in many cases, it remains unclear how best to synthesize information obtained from various scales and analysis approaches, such as atomistic molecular models, Markov state models (MSM), subcellular network models, and whole cell models. In this paper, we use protein kinase A (PKA) activation as a case study to explore how computational methods that model different physical scales can complement each other and integrate into an improved multiscale representation of the biological mechanisms. Using measured crystal structures, we show how molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss how milestoning can give reaction probabilities and forward-rate constants of cAMP association events by seamlessly integrating MD and BD simulation scales. These rate constants coupled with MSMs provide a robust representation of the free energy landscape, enabling access to kinetic, and thermodynamic parameters unavailable from current experimental data. These approaches have helped to illuminate the cooperative nature of PKA activation in response to distinct cAMP binding events. Collectively, this approach exemplifies a general strategy for multiscale model development that is applicable to a wide range of biological problems.
منابع مشابه
A Strategy for Simulation-based Design of Multiscale, Multi-functional Products and Associated Design Processes
1 Corresponding Author, Professor, Associate Chair, The GW Woodruff School of Mechanical Engineering, Savannah Campus, and ASME Fellow Email: [email protected], Phone: (404) 894-8412, Fax: (404) 894-9342 ABSTRACT Simulation Based Engineering Science (SBES) is an evolving interdisciplinary research area rooted in the methods for modeling multiscale, multi-physics events. The objectiv...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملGenetic Programming for Multiscale Modeling
We propose the use of genetic programming (GP)—a genetic algorithm that evolves computer programs—for bridging simulation methods across multiple scales of time and/or length. The effectiveness of genetic programming in multiscale simulation is demonstrated using two illustrative, non-trivial case studies in science and engineering. The first case is multi-timescale materials kinetics modeling,...
متن کاملMultiscale modeling of oscillations and spiral waves in Dictyostelium populations
Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales – from biochemical networks within individual cells to spatially structured cel...
متن کاملInvestigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کامل